additional_worker_groups:[]# Additional groups of workers to create# - name: high-mem-workers # Dask worker group name.# resources:# limits:# memory: 32G# requests:# memory: 32G# ...# (Defaults will be taken from the primary worker configuration)
现在我们将编辑该部分使其看起来像这样
additional_worker_groups:# Additional groups of workers to create-name:gpu-workers# Dask worker group name.replicas:1image:repository:rapidsai/rapidsai-coretag:21.12-cuda11.5-runtime-ubuntu20.04-py3.8dask_worker:dask-cuda-workerextraArgs:---resources-"GPU=1"resources:limits:nvidia.com/gpu:1
现在我们可以使用 my-values.yaml 中的新值更新我们的部署
helm upgrade -f my-values.yaml my-dask dask/dask
同样,您可以运行 kubectl get all -n default,您将看到我们新的 GPU 工作者 Pod 正在运行
importdask.dataframeasddimportdasklink="https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2020-04.csv"ddf=dd.read_csv(link,assume_missing=True)avg_trip_distance=ddf['trip_distance'].mean().compute()print(f"In January 2021, the average trip distance for yellow taxis was {avg_trip_distance} miles.")withdask.annotate(resources={'GPU':1}):importdask_cudf,cudfdask_cdf=ddf.map_partitions(cudf.from_pandas)avg_trip_distance=dask_cdf['trip_distance'].mean().compute()print(f"In January 2021, the average trip distance for yellow taxis was {avg_trip_distance} miles.")